Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.023$
\quad diffractometer	$\theta_{\text {max }}=29.96^{\circ}$
$\omega-2 \theta$ scans	$h=-15 \rightarrow 15$
Absorption correction: none	$k=0 \rightarrow 10$
2326 measured reflections	$l=0 \rightarrow 16$
2214 independent reflections	3 standard reflections
1774 reflections with	frequency: 120 min
$I>2 \sigma(I)$	intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.057$
$S=0.875$
2214 reflections
281 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0202 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$ $(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.175 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.105 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)

Extinction coefficient: 0.007 (3)

Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=0.06(6)$

Clardy, J. C., Chan, J. A. \& Wildman. W. C. (1972). J. Org. Chem. 37. 49-51.

Flack. H. D. (1983). Acta Cryst. A39, 876-881.
Gopalakrishna, E. M., Watson, W. H., Silva, M. \& Pacheco, P. (1978). Cryst. Struct. Commun. 7, 41-46
Gude, M., Hausen, B. M., Heitsch, H. \& König. W. A. (1988). Contact Dermatitis, 19, 1-10.
Jeffs, P. W., Abu-Donia, A.. Campau, D. \& Saiger, D. (1985). J. Org. Chem. 50, 1732-1737.
Kretschmar, M. (1996). CAD-4/PC. Version 2.0. University of Tübingen, Germany.
Labraña. J., Choy, G.. Solans, X., Font-Bardia, M., de la Fuente, G., Viladomat, F., Codina, C. \& Bastida, J. (1999). Phytochemistry, 50, 183-188.
Latvala, A., Önür, M. A., Gözler, T., Linden, A., Kivcak, B. \& Hesse, M. (1995). Phytochemistr;, 39, 1229-1240.

Sheldrick, G. M. (1990)). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Solans, X. (1978). CFEO. University of Barcelona, Spain.
Spek, A. L. (1990). Acta Cnst. A46, C-34.
Via, J., Arriortua, M. I., Ochando, L. E., Reventós, M. M., Amigó, J. M. \& Bastida, J. (1989). Acta Cryst. 45, 2020-2022.

Wagner, J., Pham, H. L. \& Döpke. W. (1996). Tetrahedron, 52, 65916600.

Weniger, B., Italiano, L., Beck, J. R., Bastida, J., Bergoñón, S., Codina, C., Lobstein. A. \& Anton, R. (1995). Planta Med. 61, 77-79.

Table 1. Selected torsion angles $\left({ }^{\circ}\right)$

C6-O1-Cl-ClOb	51.9 (2)	C2-- $\mathrm{Cl}-\mathrm{ClOb}-\mathrm{C4a}$	-57.2 (2)
$\mathrm{Cl} 10 \mathrm{~b}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	34.2 (3)	C10-C10a--C10b- Cl	141.6 (2)
$\mathrm{C} 11-\mathrm{C} 4-\mathrm{C} 4 \mathrm{a}-\mathrm{N}$	24.2 (2)	C6a-C10a-C10b-C.1	36.3 (2)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{Cb}^{(0) 2}$	167.5 (2)	$\mathrm{C4a}-\mathrm{C4}-\mathrm{Cll}-\mathrm{Cl}^{2}$	-3.1 (3)
C1. O1 .--C6-...C6a	--13.6 (3)	$\mathrm{C4}-\mathrm{Cll}-\mathrm{Cl2}-\mathrm{N}$	-19.3 (3)
O1-CI--ClOb--C4a	62.0 (2)		

The positions of 13 H atoms were computed. 11 H atoms were located from a difference map and the remaining two (on water molecules) were not located. The computed H atoms were refined isotropically using a riding model and an overall U_{iso}, while the remaining H atoms were refined freely.

Data collection: CAD-4/PC (Kretschmar, 1996). Cell refinement: CAD-4/PC. Data reduction: CFEO (Solans, 1978). Program(s) used to solve structure: SHELXS-97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP (Brueggemann \& Schmid, 1990). Software used to prepare material for publication: PLATON (Spek, 1990).

Part of this work was financially supported by CIRITCICYT (QFN95-4711) and the Comissionat per a Universitats i Recerca, Generalitat de Catalunya.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1288). Services for accessing these data are described at the back of the journal.

References

Bastida. J., Llabrés, J. M., Viladomat, F., Codina, C., Rubiralta, M. \& Feliz., M. (1987). J. Nat. Prod. 50. 199-202.
Bastida, J., Viladomat, F. \& Codina, C. (1997). Stud. Nat. Prod. Chem. 20, 323-405.
Brueggemann, R. \& Schmid, G. (1990). PC version of ORTEP3.2. University of Ulm, Germany.

Acta Cryst. (1999). C55, 387-389

(3R)-4,4-Dimethyl-2-oxotetrahydrofuran-3-yl (2S)-7-methoxy-2,3-dihydro-1,4-benzodioxin-2-carboxylate

Mostafa Khoulli, ${ }^{a} \dagger$ M. Dolors Pujol, ${ }^{b}$ Xavier Solans, ${ }^{\text {c }}$ Mercè Font-Bardia, ${ }^{c}$ Abdelaman Souizi, ${ }^{d}$ Gerard Coudert ${ }^{a}$ and Gerald Guillaumet ${ }^{a}$
"Institute de Chimie Organique et Analytique, associé au CNRS, Université d'Orleans, BP 6759, F-45067 Orleans CEDEX 2, France, ' Laboratori de Química Farmacèutica, Universitat de Barcelona, Diagonal s/n, E-08028 Barcelona, Spain, 'Departamento de Cristal-lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Marti i Franqués s/n, E-08028 Barcelona, Spain, and ${ }^{d}$ Laboratoire de Synthèse Organique et Agrochimie, Université Ibn Tofail, Faculté des Sciences, Kenitra, BP 133, Morocco. E-mail: xavier@natura.geo.ub.es

(Received 11 September 1998; accepted 26 October 1998)

Abstract

The structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{7}$, a key intermediate in the synthesis of antagonist adrenergic agents, is reported. The 1,4-benzodioxin ring shows a half-chair form with a Csp^{3} atom out of the plane

^[\dagger Current address: Université Ibn Tofaïl, Morocco.]

defined by the remaining atoms. The lactone ring shows an envelope form.

Comment

The 2,3-dihydro-1,4-benzodioxin ring system has been widely used in medicinal chemistry, particularly in the design of cardiovascular agents such as α - and β adrenergic antagonists (Timmermans \& Van Zwieten, 1982; Giardinà et al., 1985; Khouili et al., 1996a). It has been shown that the absolute stereochemistry at the stereogenic centre in 2 -substituted 2,3-dihydro-1,4benzodioxin derivatives is of prime importance for both affinity and selectivity (Khouili et al., 1996b).

The lactone ring in the title compound, (I), has an envelope form with the C13 atom -0.564 (2) \AA out of the plane defined by the remaining four atoms. A study of the Cambridge Structural Database (Allen \& Kennard, 1993) indicates that for 33 out of 57 observations the lactone moiety adopts this form, and for 18 other observations a skew-envelope form. Among the compounds having an envelope form the title compound shows the largest deviation of an atom out of the lactone plane.

(I)

The $\mathrm{C} 1, \mathrm{C} 9, \mathrm{O} 3, \mathrm{O} 4$ and C 10 atoms are in a plane. The dihedral angles with the lactone ring and the 1,4-benzodioxin moiety are 152.30 (19) and $88.8(2)^{\circ}$, respectively. The 1,4 -benzodioxin moiety shows an envelope form with the C8 atom -0.631 (2) \AA out of the plane defined by the remaining nine atoms. Usually, the 1,4 -benzodioxin moiety shows a twist-planar form with atoms in positions 2 and 3 out of the plane (25 of 29 observations in the Cambridge Structural Database). The envelope form (four of 29 observations) is observed when the C atom of the substituent linked to position

Fig. 1. Molecular structure showing 50% probability displacement ellipsoids.

2 has an electronic delocalization and when position 3 bears two H atoms.

Experimental

The reaction of 7-methoxy-2-carboxy-2,3-dihydro-1,4-benzodioxin with the chiral alcohol (R)-(-)-pantolactone gave a mixture of the two diastereomeric esters. A lactone ring was used as an auxiliary chiral centre, because it is easily hydrolysed. The esters were separated by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 98$) and the diastereoisomeric purity was assayed by HPLC (enantiomeric excess $>99 \%$) (Khouili et al., 1994). Crystals of title compound were obtained by diffusion of hexane from an ethyl acetate solution.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{7}$
$M_{r}=322.30$
Orthorhombic
$P 2,2,21$
$a=10.313$ (4) \AA
$b=11.871$ (2) \AA
$c=12.713$ (2) \AA
$V=1556.4(7) \AA^{3}$
$Z=4$
$D_{x}=1.375 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
2587 measured reflections
2555 independent reflections
2234 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.152$
$S=1.049$
2555 reflections
266 parameters
H atoms: see text
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1183 P)^{2}\right.$
$+0.0310 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.007$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=12-21^{\circ}$
$\mu=0.109 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism
$0.4 \times 0.2 \times 0.2 \mathrm{~mm}$ Colourless

$$
\begin{aligned}
& R_{\mathrm{int}}=0.010 \\
& \theta_{\max }=29.93^{\circ} \\
& h=0 \rightarrow 14 \\
& k=0 \rightarrow 16 \\
& l=0 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.311 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.250 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97 (Sheldrick, 1997a)
Extinction coefficient: 0.098 (10)

Scattering factors from International Tables for
Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$

$\mathrm{OL}-\mathrm{C} 2$	1.374 (3)	O5-Cll	1.325 (3)
$\mathrm{OL}-\mathrm{Cl}$	1.421 (3)	$\mathrm{O}-\mathrm{Cl} 2$	1.465 (4)
$\mathrm{O} 2-\mathrm{C} 7$	1.385 (3)	C1-C9	1.514 (3)
$\mathrm{O} 2-\mathrm{C} 8$	1.426 (3)		
$\mathrm{O1}-\mathrm{C} 2-\mathrm{C} 7$	122.4 (2)	O3-C9-04	125.0 (2)
$\mathrm{O} 7-\mathrm{C} 4-\mathrm{C} 3$	115.7 (2)	O3-C9-Cl	125.9 (2)
O7-C4-C5	124.6 (2)	O4-C9-Cl	109.1 (2)
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 2$	121.0 (2)		
$\mathrm{C} 2-\mathrm{OI}-\mathrm{Cl}-\mathrm{C} 9$	88.8 (2)	$\mathrm{C} 10-\mathrm{O} 4-\mathrm{C} 9-\mathrm{O} 3$	-2.7 (3)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{C} 2-\mathrm{C} 7$	5.1 (3)	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 9-\mathrm{O} 3$	-12.3 (3)
C8-O2-C7-C2	26.4 (3)	$\mathrm{C} 9-\mathrm{O} 4-\mathrm{ClO}-\mathrm{ClI}$	152.3 (2)

The positions of five H atoms were computed; the remaining H atoms were located from a difference map. The computed H atoms were refined isotropically using a riding model, while the remaining H atoms were refined independently.

Data collection: CAD-4/PC (Kretschmar, 1996). Cell refinement: CAD-4/PC. Data reduction: CFEO (Solans, 1978). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: ORTEP (Brueggemann \& Schmid, 1990). Software used to prepare material for publication: PLATON (Spek, 1990).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1024). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Brueggemann, R. \& Schmid, G. (1990). PC version of ORTEP3.2. University of Ulm, Germany.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Giardinà, D., Bertini, R., Brancia, E., Brasili, L. \& Melchiorre, C. (1985). J. Med. Chem. 28, 1354-1357.

Khouili, M., Lazar, S., Guillaumet, G. \& Coudert. G. (1994). Tetrahedron Asymmery. 5, 535-536.
Khouili, M., Pujol, M. D.., Guillaumet, G. \& Coudert, G. (1996a). $l /$ Farmaco, 51, 175-184.
Khouili, M., Pujol, M. D.. Guillaumet, G. \& Coudert, G. (1996b). Il Farmaco, 51, 185-188.
Kretschmar, M. (1996). CAD-4/PC. Version 2.0. PC version of CAD-4 software (Version 5.0). University of Tübingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Solans, X. (1978). CFEO. University of Barcelona, Spain.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Timmermans, P. B. M. W. M. \& Van Zwieten, P. A. (1982). J. Med. Chem. 25, 1389-1401.

Acta Cryst. (1999). C55, 389-391

$\mathbf{5}^{\prime}$-O-(Toluenesulfonyl)adenosine

D. Prahadeeswaran and T. P. Seshadri
Department of Physics, Indian Institute of Science, Bangalore 560 012, India. E-mail: seshadri@physics.iisc.ernet.in

(Received 6 April 1998; accepted 12 October 1998)

Abstract

The title compound, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}$, crystallizes from a water-acetone solution. The adenine base is in an anti conformation, with a glycosyl torsion angle of $-166.5(4)^{\circ}$. The ribose sugar adopts an envelope conformation $\left({ }^{3} E\right)$. The toluenesulfonyl moiety is nearly

perpendicular to the base. Both Watson-Crick and Hoogsteen sites, N1 and N6, and N6 and N7, of the adenine base are involved in a pair of hydrogen bonds, forming an A.A.A triplet pattern in the crystal lattice.

Comment

As part of our systematic X-ray studies on ribose/deoxyribose nucleosides and nucleotides (Padiyar \& Seshadri, 1996; Mande et al., 1994; Krishnan \& Seshadri, 1992), we report here the crystal structure of $5^{\prime}-O$-(toluenesulfonyl)adenosine, (I). We were also interested in studying the effect of the bulky substituent on the conformation of the nucleoside molecule.

The glycosyl torsion angle [$\mathrm{C} 4-\mathrm{N} 9-\mathrm{Cl}^{\prime}-\mathrm{O}^{\prime}$] of $-166.5(4)^{\circ}$ indicates an anti conformation. The ribofuranose ring is C^{\prime}-endo puckered. The pseudorotation parameters (Altona \& Sundaralingam, 1972) are $P=$ 19.1° and $\tau_{m}=35.5^{\circ}$. The exocyclic torsion angle about the $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$ bond is g^{+}. The toluenesulfonyl moiety is nearly perpendicular to the adenine base.

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.

